Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 27(8): 3889-3899, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37155395

RESUMO

Wearable systems can provide accurate cardiovascular evaluations by estimating hemodynamic indices in real-time. Key hemodynamic parameters can be non-invasively estimated using the seismocardiogram (SCG), a cardiomechanical signal whose features link to cardiac events like aortic valve opening (AO) and closing (AC). However, tracking a single SCG feature is unreliable due to physiological changes, motion artifacts, and external vibrations. This work proposes an adaptable Gaussian Mixture Model (GMM) to track multiple AO/AC correlated features in quasi-real-time from the SCG. The GMM calculates the likelihood of an extremum being an AO/AC feature for each SCG beat. The Dijkstra algorithm selects heartbeat-related extrema, and a Kalman filter updates the GMM parameters while filtering features. Tracking accuracy is tested on a porcine hypovolemia dataset with varying noise levels. Blood volume loss estimation accuracy is also evaluated using the tracked features on a previously developed model. Experimental results show a 4.5 ms tracking latency and average root mean square errors (RMSE) of 1.47 ms for AO and 7.67 ms for AC at 10 dB noise, and 6.18 ms for AO and 15.3 ms for AC at -10 dB noise. When considering all AO/AC correlated features, the combined RMSE remains in similar ranges, specifically 2.70 ms for AO and 11.91 ms for AC at 10 dB noise, and 7.50 ms for AO and 16.35 ms for AC at -10 dB noise. The proposed algorithm offers low latency and RMSE for all tracked features, making it suitable for real-time processing. These systems enable accurate, timely extraction of hemodynamic indices for many cardiovascular monitoring applications, including trauma care in field settings.


Assuntos
Valva Aórtica , Hemodinâmica , Animais , Suínos , Valva Aórtica/fisiologia , Frequência Cardíaca/fisiologia , Movimento (Física) , Vibração , Processamento de Sinais Assistido por Computador , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...